Background

The BACHD rat is by now a well-characterized animal model of Huntington’s disease (HD), presenting several disease relevant symptoms and pathologies. The BACHD rat represents one of the few animal models that overexpresses the full length human mutant huntingtin (mHTT) and is thus of great value for HD research. The aim of this study was to compare the metabolic properties of primary striatal, hypothalamic and cortical neurons of BACHD rats with the L-glutamate or MPP+ induced rat striatal lesion models to establish BACHD primary cells as valuable in vitro HD model.

Materials and Methods

Hemizygous BACHD and wildtype rat pups were dissected at embryonic day 19 and primary neurons of the striatum, hypothalamus and cortex were cultivated. Cells were analyzed after 1, 7 and 14 days in vitro (DIV). For the lesion models, primary striatal embryonic day 19 wildtype rat neurons were cultivated for 15 days and lesioned with L-glutamate or MPP+ for 24 hours. All samples were analyzed with the LDH- and MTT-assay.

Primary Neuron System of BACHD Rats

Results

Our data show that primary neurons (PNs) of embryonic BACHD rats have a significantly decreased metabolic activity in the striatum and hypothalamus (Fig. 1, 2). These results are comparable with data obtained by L-glutamate or MPP+ lesions in primary striatal neurons of wildtype rats (Fig. 3). Our most recent method development shows that polyQ HTT can be quantified by sandwich immunosorbent assay with a high specificity (Fig. 4).

Lesion Models of Wildtype Striatal Neurons

Quantification of polyQ HTT

Fig. 4: Quantification of polyQ HTT by sandwich immunosorbent assay using the Mesoscale Discovery platform. Whole brain lysate of a 6 months old hemizygous rat and a non-transgenic littermate were used in a dilution series of 1:10, 1:40, 1:160, 1:640 and 1:2560.

Summary and Conclusion

We conclude that the BACHD rat model is a valuable tool for the in vitro evaluation of HD-related metabolic properties. Future experiments can further be analyzed by polyQ HTT immunosorbent assay.

We look forward to support your research

Contact: Stefanie Flunkert | R&D Administrator | stefanie.flunkert@qps.com
Birgit Hutter-Paier, PhD | Director Neuropharmacology | birgit.hutter-paier@qps.com
QPS Austria GmbH | Parkring 12 | 8074 Grambach | Austria

www.qpsneuro.com