Construction of a tau seed-injection model using hTau mice
Shigeru Akasofu1, Jane Gardlon2, Malcolm Roberts2, Ezat Sajedi3, Rohan de Silva4, Tina Loeffler4, Stephan Duller4, Birgit Hutter-Paier1
1Eisai Co., Ltd., Tsukuba Research Laboratories, Tokorozawa S-3, Tsukuba-shi, Ibaraki 300-3635, Japan; 2Eisai Ltd, Mosquito Way, Hatfield, Herts AL10 9SN, UK; 3University College London, Bata Ltd, Western Institute, Wakefield Street, University College London, London, WC1N 1P]; 4QPS Austria GmbH, Parking 12, 8074 Grambach, Austria

Background
Under pathological conditions, the microtubule-associated protein tau can assemble into highly structured tangles to cause a variety of neurodegenerative diseases collectively termed tauopathies. Such diseases include Alzheimer’s disease (AD), frontotemporal dementia (FTD) and corticobasal degeneration (CBD). The precise mechanism of tangle formation is not completely understood, but in recent years, evidence has accumulated that tau pathology can propagate through the brain via extracellular tau seeds. Since most tau transgenic mouse models lack significant levels of insoluble tau or tangles, the development of tau-seeding models has gained increasing attention.

Methods
To generate a tau-seeding model with highest translational value, we used the hTau transgenic mouse model. These mice are bred on a mutant tau knockout background, hence lacking the endogenous protein. The hTau mice also overexpress all six human tau isoforms without mutations, therefore coming closest to human conditions. Six month old hTau animals received a single unilateral intra-hippocampal injection of one of three different tau seeds: (1) recombinant P301S tau, (2) sarkosyl-insoluble fraction from rTg4510 mouse tissue or (3) sarkosyl-insoluble fraction from human AD brains. Vehicle injected mice and non-injected mice served as controls. Three months after injection, the ipsi- and contralateral hippocampi and cortices were analyzed for changes in soluble and sarkosyl-insoluble tau species.

Results
Soluble tau levels were not influenced by any condition, whereas sarkosyl-insoluble tau increased in the human AD seed-injected hippocampus but not when recombinant P301S protein or rTg4510 material was used as exogenous seeds. The effect was significant in the ipsilateral cortex of both female and male mice from this group. Even in the contralateral hippocampus a tendency to increased insoluble tau levels was observed by Western blot and immunosorbent assay.

Contact for more information about the models:
Birgit Hutter-Paier, PhD | Director Neuropharmacology
QPS Austria GmbH | Parking 12 | 8074 Grambach | Austria
birgit.hutter-paier@qps.com | www.qpsneuro.com

Figure 1. Western blot analysis of tissue from the ipsilateral hippocampus of seed-injected hTau mice. Total tau immunoreactivity of the sarkosyl-insoluble hippocampal fraction with H77 antibody after 3 months incubation with different tau seed material. A: female; B: male animal. C: Quantification and statistical analysis of Western blots showing highly increased total tau levels in the ipsilateral hippocampus of hTau mice of both gender injected with human sarkosyl-insoluble fraction from AD brain. n = 6 per group. Mean ± SEM, *p<0.05, **p<0.01 compared with vehicle untreated-t test. F: female; M: male.

Figure 2. Western blot analysis of tissue from the contralateral hippocampus of seed-injected hTau mice. Total tau immunoreactivity of the sarkosyl-insoluble hippocampal fraction with H77 antibody after 3 months incubation with different tau seed material shows weak signal in some human insoluble AD tau-injected animals. A: female, B: male animal.

Figure 3. Quantification of total tau and pTau231 by Mesoscale Discovery Immunosorbent assay. Total tau (A) and pTau231 (B) quantification of the sarkosyl-insoluble ipsilateral and contralateral hippocampus and cortex following 3 months incubation with different tau seed material. Samples of each group were pooled in this analysis.

Conclusion
Unilateral intra-hippocampal injection of insoluble tau from human AD brains into hTau mice represents a suitable model for further investigation of tau aggregation, seeding and spreading as well as associated interventions.

Literature