An LC-MS/MS Method for the Evaluation of FF-10502 Incorporation into Whole Blood Cellular DNA as a Pharmacodynamic Marker

Yuzhu Xue¹, Tiffany Chen¹, Brittney Offenbacker¹, MingLai Cheng¹, Takayuki Yamada², Timothy Madden³, Yuan-Shek Chen¹, Jamie Zhao¹, Susan Carr Zondlo¹, and T. Ben Hsu¹ ¹ QPS, LLC, Newark, Delaware, ² FUJIFILM Corporation, Tokyo, Japan, ³ FUJIFILM Pharmaceuticals U.S.A., Inc., Cambridge, Massachusetts

INTRODUCTION

FF-10502 (F), a structural analog of nucleoside deoxycytidine (dC), is a pyrimidine nucleoside antimetabolite anticancer agent. Pyrimidine antimetabolites exert cell cycle phase-specific activity by killing cells undergoing DNA synthesis (S-phase), and blocking the progression of cells through the G1/S-phase boundary. To evaluate F incorporation into whole blood cellular DNA as a pharmacodynamic marker requires having a method to simultaneous determines F and deoxyguanosine (dG) in human DNA. The key aspects of this method includes 1) achieving the LLOQ for F at 5 pg/mL; 2) one-step DNA hydrolysis procedure to reduce the process time and avoid the need to heat denature the DNA at 95° C; 3) simultaneous quantifying F and dG with the concentration difference greater than 10^{5} ; 4) having F-incorporated DNA obtained from murine tumor tissues as an assay control on DNA hydrolysis and assay performance; and 5) independent of amount of DNA analyzed giving consistent ratio of F to dG.

FF-10502 C₉H₁₂FN₃O₃S, MW: 261.27

[¹³C₂¹⁵N₃]FF-10502 C₂¹³C₂H₁₂F¹⁵N₂O₂S

Deoxycytidine

2'-Deoxyguanosine C₁₀H₁₃N₅O₄, MW: 267.24 Deoxyguanosine-¹³C₁₀¹⁵N₅ ¹³C₁₀H₁₃¹⁵N₅O₄

DNA INCORPORATION/PD MARKER

ASSAY DEVELOPMENT CONSIDERATIONS

 Simplify DNA hydrolysis process – one step, instead of two steps; no DNA denature step at 95°C. It was achieved by applying DNA Degradate Plus mix.
 Simultaneous determination of F and dG with concentration difference greater than 10⁵.

3. Monitor the impact of DNA hydrolysis and assay performance on F/dG ratio from batch to batch.

4. Evaluate the difference in DNA amount on F/dG ratio. Include F-DNA obtained from murine tumor tissue as a control in every batch.
5. Monitor the impact of DNA Decradase Plus and overnidht incubation at 37°C

on the assay performance considering STDs and QCs prepared in surrogate matrix were not subjected to DNA hydrolysis step. Two additional controls are included in each batch: Surrogate Matrix Blank with DNA hydrolysis step and MQC with DNA hydrolysis step.

SMAPLE PROCESSING

All DNA samples were dissolved in and diluted with DNA hydration butter. STDs, QCs and other test samples were prepared in surrogate matrix.

Surrogate matrix: 10 µg/mL of each of dA, dC and T in DNA hydration buffer

	MC	MC	CO		ΓΙΟΝ
LC-	11121	IVIS	CU	וטא	

S

HPLC: MS/MS: Column: Mobile Phase	AB Sci HSS T		00 0 mm, 1.8	8 μm, Waters e and 0.45% formic acid in water / MeOH
Compound	DE (V)	CE (eV)	CXP (V)	Transition(m/z)
F	46	19	12	261.9→112.1
F-IS	46	19	12	267.1→117.1
dG	240	50	15	268.1→152.0
dG-IS	240	50	15	283.1→162.1

RESULTS

Precision and Accuracy of the Assay							
Analyte		LLOQ QC		L, M and HQC		e-QC	
		Intra-Run	Inter-Run	Intra-Run	Inter-Run	Intra-Run	Inter-Run
F	RSD	3.5-6.5	6.4	0.3-7.5	1.6-8.0	1.0-1.7	5.2
(5 – 5000 pg/mL)	%RE	-7.9-4.7	-3.4	-7.4-10.5	-2.3-3.6	-3.5-8.4	3.6
dG	RSD	1.9-12.4	10.3	1.7-7.6	3.4-5.8	3.8-6.0	4.4
(1 – 100 µg/mL)	%RE	-11.5-9.3	0.2	-5.8-6.0	-2.7-2.4	2.9-5.3	3.9

F and dG Concentrations in Murine DNA Samples							
	F (pg/mL)	dG (µg/mL)	F/dG (pg/µg)	F (pg/mL)	dG (µg/mL)	F/dG (pg/µg)	Inter-Run
	Run 1	, 50 µg/mL M	urine DNA	Run 2,	50 µg/mL Mu	Irine DNA	F/dG (pg/µg)
Mean	416	6.81	60.9	843	12.9	65.6	65.7
RSD	13.6	4.5	10.3	2.3	2.7	3.5	8.8
	Run 3, 50 µg/mL Murine DNA			Run 4,	20 µg/mL Mu	Irine DNA	
Mean	848	12.5	68.6	354	5.25	67.5	
RSD	2.0	10.8	12.1	7.1	7.9	6.2	

F and dG Concentrations in							
	Mouse Blood DNA Samples						
	Sample	dG	F/dG				
	ID	(pg/mL)	(µg/mL)	(pg/µg)			
	5021A	BQL	1.55	NA			
	5022A	BQL	1.68	NA			
	5023A	BQL	2.18	NA			
	2401A	105	2.23	47.1			
	2402A	63.7	1.41	45.2			
	2403A	66.9	1.54	43.4			
	4801A	79.6	1.33	59.8			
	4802A	81.5	1.48	55.1			
	4803A	77.4	1.30	59.5			

CONCLUSIONS

1. A one-step DNA hydrolysis procedure was successfully developed and applied for this method.

 LC-MS/MS conditions enabled simultaneous quantification of two analytes with a concentration difference greater than 10⁵.
 F-incorporated DNA obtained from murine tumor tissue was applied as an assay control on DNA hydrolysis and assay. performance by comparing the F/dG ratio from batch to batch.
 The assay has successfully applied to analyze DNA samples isolated from mouse and human studies.