INTRODUCTION

FF-10502 (F), a structural analog of nucleoside deoxycytidine (dC), is a pyrimidine nucleoside antimetabolite anticancer agent. Pyrimidine antimetabolites exert cell cycle phase-specific activity by killing cells undergoing DNA synthesis (S-phase), and blocking the progression of cells through the G1/S-phase boundary. To evaluate F incorporation into whole blood cellular DNA as a pharmacodynamic marker requires having a method to simultaneously determine F and deoxycytidine (dG) in human DNA. The key aspects of this method includes 1) achieving the LLOQ for F at 5 pg/mL; 2) one-step DNA hydrolysis procedure to reduce the process time and avoid the need for heat denature the DNA at 95°C; 3) simultaneous quantifying F and dG with the concentration difference greater than 10^4; 4) having F-incorporated DNA obtained from murine tumor tissues as an assay control on DNA hydrolysis and assay performance; and 5) independent of amount of DNA analyzed giving consistent ratio of F to dG.

ASSAY DEVELOPMENT CONSIDERATIONS

1. Simplify DNA hydrolysis process – one step, instead of two steps: no DNA denature step at 95°C. It was achieved by applying DNA Degradate Plus mix.
2. Simultaneous determination of F and dG with concentration difference greater than 10^4.
3. Monitor the impact of DNA hydrolysis and assay performance on F/dG ratio from batch to batch.
4. Evaluate the difference in DNA amount on F/dG ratio. Include F-DNA obtained from murine tumor tissue as a control in every batch.
5. Monitor the impact of DNA Degradate Plus and overnight incubation at 37°C on the assay performance considering STDs and QCs prepared in surrogate matrix were not subjected to DNA hydrolysis step. Two additional controls are included in each batch: Surrogate Matrix Blank with DNA hydrolysis step and QOC with DNA hydrolysis step.

SAMPLE PROCESSING

All DNA samples were dissolved in and diluted with DNA hydration buffer. STDs, QCs and other test samples were prepared in surrogate matrix.

DNA INCORPORATION/PD MARKER

F (Inhibitor of DNA synthesis)

LC-MS/MS CONDITIONS

- **HPLC**: Shimadzu Nexera
- **MS/MS**: AB Sciex API5000
- **Column**: HSBS T3, 2.1 x 50 mm, 1.8 µm, Waters
- **Mobile Phases**: 5 mM ammonium formate and 0.45% formic acid in water / MeOH

RESULTS

Conclusions

1. A one-step DNA hydrolysis procedure was successfully developed and applied for this method.
2. LC-MS/MS conditions enabled simultaneous quantification of two analytes with a concentration difference greater than 10^4.
3. F-incorporated DNA obtained from murine tumor tissue was applied as an assay control on DNA hydrolysis and assay performance by comparing the F/dG ratio from batch to batch.
4. The assay has successfully applied to analyze DNA samples isolated from mouse and human studies.