Untangling Alzheimer’s Disease Hallmarks in Sensory Systems of Rodent Models

Magdalena Temmel1, Meritxell Aguilo Garcia1,2, Tina Loeffler1, Joerg Neddens1, Irati Aiestaran Zelaia1, Vera Niederkofler1, Stefanie Flunkert1 and Birgit Hutter-Paier1

1QPS Austria GmbH, Parking 12, 8074 Grangbach, Austria; 2Institute of Molecular Biosciences, University of Graz, Graz, Austria

BACKGROUND

Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. Major hallmarks of the disease are: (1) extracellular plaque deposits of the β-amyloid peptide (Aβ) and (2) intracellular neurofibrillary tangles of phosphorylated tau. Published research suggests an association between AD and functional impairments of sensory systems. In fact, the occurrence of tau-mediated glaucoma has been reported, as well as AD protein-associated neuropathology in sensory systems.

MATERIALS and METHODS

To explore disease mechanisms and investigate features of AD-related pathological changes, we analyzed eyes from the rodent AD model TMHT and non-transgenic control mice, aged 6 and 12 months in order to address suitable biomarkers for early screening tests of AD.

RESULTS

Histological analyses of different neuronal and neuropathological markers showed mostly a signal increase in TMHT mice compared to ntg controls. Those markers include cholinergic neurons, astroglia, microglia and phosphorylated tau at Thr231. Furthermore, tyrosine hydroxylase signal was significantly reduced in 6 months old TMHT mice compared to non-transgenic controls, suggesting impaired chatecholaminergic function.

SUMMARY and CONCLUSION

The TMHT model employed in this study together with the specific antibodies tested, provide a powerful tool to analyze neuropathology in the retina of TMHT mice. In fact, this study shows alterations in the expression of various neurotransmitters and neuropathological markers analyzed in TMHT compared to non-transgenic mice, not only at the age of 6 but also at 12 months. Additionally, evaluation of the visual cortex of the same animals has been started in order to receive a detailed characterization of the visual system neuropathology.

Contact for more information about the models:
Birgit Hutter-Paier, PhD | Director Neuropharmacology
QPS Austria GmbH | Parking 12 | 8074 Grangbach | Austria
birgit.hutter-paier@qps.com | www.qpsneuro.com

Meet QPS at Booth #28

Poster #399

© 2019 QPS, LLC. Confidential. All rights reserved.