Safety, tolerability and pharmacodynamic results of a first in human study with the new antiplatelet agent ACT017 for the treatment of the acute phase of ischemic stroke

Glycoprotein VI (GPVI) is accepted as a target to develop effective antiplatelet agents without bleeding risk. Current treatments for acute ischemic stroke, i.e. thrombolytics and thrombectomy, are limited by a narrow time window and the risk of bleeding that prohibits the use of currently available antiplatelet drugs. GPVI antagonists would therefore be potentially useful at the acute phase of stroke. ACT017 is a clinical-grade anti-GPVI fragment of an monoclonal antibody. Preclinical studies with ACT017 in non-human primates have shown its ex vivo biological efficacy on platelet aggregation, specificity and excellent tolerability.

This first-in-human study aimed to evaluate the safety and tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of single ascending intravenous doses of ACT017 in healthy male and female subjects.

RESULTS: SAFETY/TOLERABILITY

All subjects completed the study as per protocol. There were no SAEs. All treatment related AEs were of a mild intensity. None of the TEAEs considered as related to the study drug were identified as bleeding related. Most frequently reported AEs were headache and head discomfort. There were no time and dose related effects on vital signs, ECG, safety lab, coagulation, GPVI expression and immunogenicity. None of the subjects reported infusion site reactions.

RESULTS: PHARMACOKINETICS

Plasma concentration of ACT017

Peak at the end of the loading dose and plateau until the end of the infusion

Linear relation between plasma concentration of ACT017 and the administered dose

Recovery of ACT017 in urine is only significant (> 1%) at the two highest doses, which might indicate a saturation of the breakdown of ACT017.

RESULTS: PHARMACODYNAMICS

No prolongation of bleeding time at any dose

Increasing doses of ACT017 impacts both the extent of the aggregation and the duration of the effect.

CONCLUSIONS

The novel antiplatelet agent ACT017, at doses between 62.5 to 2000 mg, has consistent pharmacokinetic/pharmacodynamic properties and favorable safety and tolerability profiles in healthy volunteers. This first in human study paves the way for the subsequent assessment of ACT017 safety and efficacy in patients with thrombosis. A phase 1b/2a with ACT017 is on going as an add-on treatment in acute ischemic stroke.