Progressive Increase of Alzheimer’s Disease Pathology in 5XFAD Transgenic Mice

Tina Loeffler, Magdalena Temmel, Jörg Neddens, Irene Schilcher, Birgit Hutter-Paier
QPS Austria, Parkring 12, 8074 Grambach, Austria

BACKGROUND
Today, Alzheimer’s disease (AD) is one of the most devastating neurodegenerative diseases worldwide. Pathologically increased β-amyloid (Aβ) in the brain of AD patients is thought to be one of the main causes for the observed progressive cognitive decline in affected people. The development of new drugs against AD is therefore a main research focus. To be able to test these new drugs, appropriate animal models are needed. 5xFAD mice bear 5 mutations, 3 in the APP695 gene and 2 mutations in the presenilin 1 gene. The expression of the 5xFAD transgene is driven by the neuron-specific Thy1 promoter. The 5xFAD transgenic mouse model mimics the most crucial phenotypic pathologies of amyloidogenic neurodegeneration, and is therefore among the best transgenic AD animal models available.

MATERIALS and METHODS
We analyzed the soluble and insoluble fraction of whole brain lysate from 5xFAD mice over age for aggregated Aβ by A4 assay and for Aβ with MesoScale Discovery platform. Furthermore Aβ aggregates as well as neuroinflammation, as indicated by astrocytosis and activated microglia, were evaluated by quantitative of immunofluorescent labeling.

RESULTS

Our results show an early and progressive increase of Aβ 40 and 42 aggregates as well as neuroinflammation in the cortex and hippocampus of 1 to 9 months old 5xFAD mice.

Aggregated Aβ by A4 assay

Figure 1: Aggregated A4 species of 1 to 9 month old 5xFAD transgenic mice. A: cortex; B: hippocampus. Tissue was analyzed by A4 assay. S/N: mean SEM of A5 female or male animal per group. S/N, signal to noise ratio. Two-way ANOVA with Bonferroni post hoc test, **p<0.05, ***p<0.001. Significance shows differences between sexes. Increase over age is highly significant for both sexes and brain regions (not labeled).

SUMMARY and CONCLUSION
Our results suggest that 5xFAD mice are not only a well-suited model for AD research but also to analyze AD-related neuroinflammation. Additionally these data give insight into the progression of the most prominent disease hallmarks in 5xFAD mice, providing a good basis for planning possible efficacy studies in those animals.

For more information about the model please visit: www.qpsneuro.com
or send us an e-mail: office-austria@qps.com

Meet QPS at Booth #212
Poster #P1-112

Aβ and Aβ aggregates

Figure 2: Quantification of A442, B-sheets (Thioflavin S) and pyroglutamylation amyloid (pE3-amyloid) load in the cortex and hippocampus of 1, 6, 9 and 12 month old 5xFAD transgenic mice. Immunoreactive IR area in percent in the cortex and hippocampus. Values shown transgenic [htg] mice represent background corrected. n=5; Mean = SEM. Two-way ANOVA with Bonferroni’s post hoc test. *p<0.05; **p<0.01; ***p<0.001.

Neuroinflammation

Figure 3: Neuroinflammation in 5xFAD transgenic mice. Quantitative Dionex activated microglia (CD68 labeling) and astrocytosis. (B: C(arboxyfluorescein)-labeled) in the cortex and hippocampus of 1, 6, 9 and 12 month old 5xFAD transgenic mice. Immunoreactive IR area in percent in the cortex and hippocampus. Values shown transgenic [htg] mice represent background corrected. n=5; Mean = SEM. One-way ANOVA with Bonferroni’s post hoc test. *p<0.05; **p<0.01; ***p<0.001.

Figure 4: Representative images of CD68, C(arboxyfluorescein)-labeled, DAPI, Thy1 and DAPI labeling in 9 months old 5xFAD transgenic mice.