Bioanalytical monitoring of gene therapy trials: methodologies for PK profiling of oligonucleotides

Fabrizia Fusetti¹, Zamas Lam², Monique Putman¹, Susan Zondlo², Brad Yuska², Lakshmi Ramanathan², Tim Snow²

¹QPS Netherlands BV - ²QPS Holdings LLC

4 8 12 16 Time (hours)

ABSTRACT

CUSTOM-BUILT RESEARCH

- Understanding of the chemistry and pharmacology of allele-specific oligonucleotides (ASO) and small interfering RNA's (siRNA) is advancing
- > Application of oligonucleotides in gene and enzyme-replacing therapy for treatment of rare and orphan diseases is becoming a more attractive commercial target for pharma and biotech
- > Bioanalytical monitoring of gene therapy toxicology studies and clinical trials needs precise methodologies for pharmacokinetics assessments
- > Accessibility to high-resolution mass spectrometry is fundamental for accurate and sensitive determination of PK profiling of oligonucleotide drugs
- > High recoveries can be achieved with two-dimensional chromatography allowing accurate quantification in the pg/mL for plasma (low ng/mL for tissue) within a broad dynamic range
- Our standard UPLC-HRMS workflow delivers qualitative and quantitative data with high throughput without compromising data quality (run time of 4 minutes injection-to-injection)
- Metabolite identification can be obtained on a similar chromatographic platform, requiring a 20-30 minutes runtime (less throughput but higher molecular detail).
- PK of oligonucleotide drugs can be efficiently and reliably addressed through implementation of our optimized UPLC-HRMS and UPLC-MS/MS workflows while generating valuable metabolic information in different matrices and species, from *in vitro* and preclinical studies to clinical development.

NUCLEIC ACID THERAPEUTICS			BIOANALYTICAL PLATFORMS		
Antisense Oligonucleotides	siRNA	Synthetic mRNA	LC-MS	Hybridization ELISA or LC/FLD	qPCR
ssRNA	dsRNA	ssRNA	Mass <25 base (ss)	Specific hybridization <30 bases (ds)	Specific hybridization >60 bases
4,000-6,000 MW 13,000-16,000 MW		450,000-600,000 MW	In matrix, SPE, LLE Un-amplified	IN MATRIX, SPE	Extraction
14-20 nucleotides, single 22-27 nucleotides double strand		strand 1,500-2,000 nucleotides	1 -10 ng/mL LLOQ	1 ng/mL LLOQ	50 copies LLOQ
Translation attenuation; RNAseH based degradation		Gene expression	ISR	ISR	-
Often chemically modified	Also chemically modified	Typically un-modified	Excellent specificity	Good specificity Background interference possible	Excellent specificity
Assays for plasma PK profiling and tissue distribution					
 Full PK profiling should address Plasma In vitro and in vivo metabolism tissue distribution potential renal excretion Highly charged drug molecule Cation adducts can severely reduce the signal of the ion of interest, decrease sensitivity, hard to troubleshoot High-sensitivity,accurate and selective methods GLP compliant quantitation for IND/CTA-enabling studies High sample throughput Stable calibration Uniform resolution over a large mass range to accurately determine the mass of multiply charged parents and metabolites Robust ion-source requiring minimal cleaning Degradation by Exo- and Endonucleases Quantitation needed for parent drug and metabolites No specific regulatory guidelines 		Internal standard analogie WAX SPE NUCACAEN NUCACAEN Argung REPC 18, 2 tool mm 17 µm (d00 metcing) High Resolution Mass Spectrum Subsection 17 µm (d00 metcing) High Resolution Mass Spectrum Subsection 17 µm (d00 metcing) High Resolution Mass Spectrum Full Scan Quantitation: summing the response from (d00 metcing) High Resolution Mass Spectrum full Scan Quantitation: summing the response from (d00 metcing) High Resolution Mass Spectrum Light Resolution Mass Spectrum full Scan Quantitation: summing the response from (d00 metcing) High Resolution Mass Spectrum full Scan Quantitation: summing the response from (d00 metcing) High Resolution Mass Spectrum A full Scan Quantitation: summing the response from (d00 metcing) High Resolution Mass Spectrum High Resolution Mass S	Lon pairing thromatography H-ODPAHFIP and H-OMACHDIPAHFIP (nector-ke-spectod 3-4 ms) Triple TC 35. Full scent (10 10 of a typical siRNA (resolution accurate mass of 10 most intense ions (f 10 of antisense, antisense IS, sense, sen 10 of antisense, antis	Solutions Solutions • Advancements in MS platform: LC-MS/MS (2003) → LC-HRMS (2014) Quantitative → ID and Quantitative Triple ToF® 5600 → Triple ToF® 6600 LLOQ <5 ng/nL → 100 pg/nL	
Case study – Va Chromatograms and fu Tremander Provide the study of the study of the study of the study of the study of the study of the study of the study of the study	lidation of PK method II scan HRMS spectra – Run-time:	A minutes injection to injection 4 minutes injection to injection 14 minutes injection to injection 14 minutes injection to injection 14 minutes injection to injection 15 minutes injection	therapeutic si-RNA c Calibration curves Calibration	ndigonucleotide in cynomolo re parameters for anti-sense and sense strand	s in Monkey Plasma

Plasma Samples (0-6 h)

Kidney extracts