Bioanalytical monitoring of gene therapy trials: methodologies for PK profiling of oligonucleotides

Fabrizia Fusetti1, Zamas Lam2, Monique Putman1, Susan Zondlo2, Brad Yuskaitis3, Lakshmi Ramanathan3, Tim Snow2
1QPS Netherlands BV 2QPS Holdings LLC

ABSTRACT

- Understanding the chemistry and pharmacology of allele-specific oligonucleotides (ASO) and small interfering RNAs (siRNA) is advancing
- Application of oligonucleotides in gene and enzyme-replacing therapy for treatment of rare and orphan diseases is becoming a more attractive commercial target for pharma and biotech
- Bioanalytical monitoring of gene therapy toxicology studies and clinical trials needs precise methodologies for pharmacokinetics assessments
- Accessibility to high-resolution mass spectrometry is fundamental for accurate and sensitive determination of PK profiling of oligonucleotide drugs
- High recoveries can be achieved with two-dimensional chromatography allowing accurate quantification in the pg/mL for plasma (low ng/mL for tissue) within a broad dynamic range
- Our standard UPLC-HRMS workflow delivers qualitative and quantitative data with high throughput without compromising data quality (run time of 4 minutes injection-to-injection)
- Metabolite identification can be obtained on a similar chromatographic platform, requiring a 20-30 minutes runtime (less throughput but higher molecular detail).
- PK of oligonucleotide drugs can be efficiently and reliably addressed through implementation of our optimized UPLC-HRMS and UPLC-MS/MS workflows while generating valuable metabolic information in different matrices and species, from in vitro and preclinical studies to clinical development.

NUCLEIC ACID THERAPEUTICS

<table>
<thead>
<tr>
<th>Antisense Oligonucleotides</th>
<th>Synthetic mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssRNA</td>
<td>siRNA</td>
</tr>
<tr>
<td>4,000-6,000 MW</td>
<td>13,000-16,000 MW</td>
</tr>
<tr>
<td>14-20 nucleotides, single strand</td>
<td>1,500-2,000 nucleotides</td>
</tr>
<tr>
<td>Translation attenuation; RNAaseH based degradation</td>
<td>Gene expression</td>
</tr>
<tr>
<td>Often chemically modified</td>
<td>Typically un-modified</td>
</tr>
</tbody>
</table>

LC-MS

- Mass <25 base (ss)
- In matrix, SPE, LLE
- Un-amplified
- 1-10 ng/mL LLOQ
- ISR
- Excellent specificity

BIOL ANALYTICAL PLATFORMS

- Hybridization ELISA or LCFLD
- qPCR

Bioanalytical challenges

- Full PK profiling should address:
 - Plasma
 - In vitro and in vivo metabolism
 - Tissue distribution
 - Potential renal excretion
 - Highly charged drug molecule
 - Cation adducts can severely reduce the signal of the ion of interest, decrease sensitivity, hard to troubleshoot
 - High-sensitivity, accurate and selective methods
 - GLP compliant quantification for IND/ClinTA-enabling studies
 - High sample throughput
 - Stable calibration
 - Uniform resolution over a large mass range to accurately determine the mass of multiply charged parents and metabolites
 - Robust ion-source requiring minimal cleaning
 - Degradation by Exo- and Endonucleases
 - Quantitation needed for parent drug and metabolites
 - No specific regulatory guidelines

Solutions

- Advancements in MS platform:
 - Quantitative → ID and Quantitative
 - TripleToF® 5600 → TripleToF® 6600
 - LLOQ <5 ng/mL → 100 pg/mL
 - Rapid WAX SPE extraction (Clarity, NH2/DAC/ACN)
 - Dynamic range 10^11
 - Excellent calibration
 - Working resolution: 35K to 40K
 - Narrow mass extraction window (50-75 mDa)
 - High throughput: 3x96 well plate batch per day (4 min injection-to-injection run time)
 - Fits validation acceptance criteria for small molecules and chromatographic methods
 - GLP compliant quantitation per latest FDA BMV guidance

Case study – Validation of PK methods for the determination of a therapeutic si-RNA oligonucleotide in cynomolgus monkey Plasma

Assays for plasma PK profiling and tissue distribution

Chromatograms and full scan HRMS spectra - Run time: 4 minutes injection to injection

Calibration curve parameters for anti-sense and sense strands in Monkey plasma

Extracted ion chromatogram for profiling and metabolite identification in plasma and kidney tissues

In-house developed software solution to assign ions to metabolites

Degradation by Exo- and Endonucleases

Metabolite identification

- High sample throughput
- Stable calibration
- Uniform resolution over a large mass range to accurately determine the mass of multiply charged parents and metabolites
- Robust ion-source requiring minimal cleaning
- Degradation by Exo- and Endonucleases
- Quantitation needed for parent drug and metabolites
- No specific regulatory guidelines

Degradation by Exo- and Endonucleases

Degradation by Exo- and Endonucleases

Degradation by Exo- and Endonucleases

Degradation by Exo- and Endonucleases