Metallo protein quantification by LC-ICP-MSMS
Eric van der Horst, Director Method Development LC-MSMS

[^0]Table of Contents
// ICP-MS and Metalloproteins
// Wilson disease and anaemia
// Challenges and solutions in quantitation

ICP-MS

Plasma: Gas stream passes through plasma maintained by a strong RF field (1-2 kWatt, 27-41 MHz) and Argon

Metallo proteins

Transferrin (76kDa)

Ceruloplasmin (151 kDa)

Anaemia due to hemodialysis in Chronic Kidney Disease

Key analytical parameters

- Total Iron (CI on ICP-MS)
- Transferrin bound iron (LC-ICP-MS)
- Total Iron binding capacity (LC-ICP-MS)

Wilson disease (copper metabolism disorder)

WILSON'S DISEASE

Key analytical parameters

- Total copper (FIA on ICP-MS)
- Ceruloplasmin bound copper (LC-ICP-MS)
- Free / echangeable copper (LC-ICP-MS)

Total Iron / Copper by Continuous Infusion or Flow Injection Analysis

- "Dilute and shoot", no sample preparation, no chromatography
- Proxy matrices for the calibration curve for absolute quantitation
- Low level plasma/serum and standard addition for QC-levels (LLOQ often in proxy matrix)
- Fast
- Fe suffers from interference from Argon (ArO^{+}is $\mathrm{m} / \mathrm{z} 56$, same as Fe) \rightarrow remedy is
 addition of H_{2}
- Separation on a Waters BEH200Å SEC 7.8 x 150 mm column, isocratic elution
- Due to addition: study samples within normal reference ranges
- Proxy matrix for calibration samples in a PBS HSA / transferrin solution (Fe spiked)
- Not homogenious at this scale -> native concentration based on standard addition of the calibration curve
- Low QC: low concentration matrix, higher QC's: standard addition of Fe solution

STD A ("native" + 100 ng/mL)

RT 3.78 min

STD H ("native" $+5000 \mathrm{ng} / \mathrm{mL}$)

Challenges for transferrin bound iron detection

- In general concentrations within (or above) normal reference ranges
- Lyophilyzed transferrin behaves simmilar to native transferrin
- Added Iron $\left(\mathrm{Fe}^{2+}\right)$ readily binds to transferrin, no equilibrium or volume effect
- Human serum albumin and lyophilyzed transferrin pose a small challenge
- Material is not homogeneous in the scale (low mg) used
- Different batches have different iron contents (same as different matrices)

Linearity demonstrated up to $+5000 \mathrm{ng} / \mathrm{mL}$

Sample description	Nomina conc (ng/mL	Ratio	(Y2-Y1)	(X2-X1)	$d(x / y)$	$\begin{array}{r\|r} \hline \text { Native } \\ \text { conc } \\ (\mathrm{ng} / \mathrm{mL}) \end{array}$	Corr nom. conc ($\mathrm{ng} / \mathrm{ml}$)
Blank_artificial_matrix_+_S	0.00	0.171	N.Ap.	0.00	N.Ap.	522	N.Ap.
Blank_artificial_matrix_+_S	0.00	0.171	N.Ap.	0.00	N.Ap.		N.Ap.
STD_A_(Y+_100_ng/mL_07_Mar_2019)	100	0.212	0.0405	100			622
STD_B_(Y+_200_ng/mL_07_Mar_2019)	200	0.242	0.0703	200	0.000352	488	722
STD_C_(Y+_500_ng/mL_07_Mar_2019)	500	0.341	0.170	500	0.000339	505	1022
STD_D_(Y+_1000_ng/mL_07_Mar_2019)	1000	0.499	0.327	1000	0.000327	524	1522
STD_E_(Y+_2000_ng/mL_07_Mar_2019)	2000	0.797	0.625	2000	0.000313	548	2522
STD_F_(Y+_3000_ng/mL_07_Mar_2019)	3000	1.06	0.892	3000	0.000297	577	3522
STD_G_(Y+_4000_ng/mL_07_Mar_2019)	4000	1.35	1.18	4000	0.000296	580	4522
STD_H_(Y+_5000_ng/mL_07_Mar_2019)	5000	1.65	1.48	5000	0.000295	580	5522
STD_A_(Y+_100_ng/mL_07_Mar_2019)	100	0.206	0.0344	100			622
STD_B_(Y+_200_ng/mL_07_Mar_2019)	200	0.250	0.0786	200	0.000393	436	722
STD_C_(Y+_500_ng/mL_07_Mar_2019)	500	0.339	0.168	500	0.000335	511	1022
STD_D_(Y+_1000_ng/mL_07_Mar_2019)	1000	0.524	0.352	1000	0.000352	486	1522
STD_E_(Y+_2000_ng/mL_07_Mar_2019)	2000	0.867	0.696	2000	0.000348	493	2522
STD_F_(Y+_3000_ng/mL_07_Mar_2019)	3000	1.14	0.974	3000	0.000325	528	3522
STD_G_(Y+_4000_ng/mL_07_Mar_2019)	4000	1.45	1.28	4000	0.000320	535	4522
STD_H_(Y+_5000_ng/mL_07_Mar_2019)	5000	1.81	1.64	5000	0.000328	523	5522

- Solution: determine native
concentration per calibration curve and for each batch of prepared QC's

LLOQ 562 ng/mL

a) $>15 \mid \%$ RE from nominal ($>20 \mid \%$ RE |at LLOO); value used in statistical calculations

Iron binding capacity (linearity truncated due to saturation)

- Before saturation
- After saturation
..... Linear (Before
saturation)
..... Linear (After
saturation)

Precision and accuracy

Run Date	Run Name	Serum 1 $(\mathrm{ng} / \mathrm{mL})$	Serum 2 $(\mathrm{ng} / \mathrm{mL})$	Serum 3 $(\mathrm{ng} / \mathrm{mL})$	Serum 4 $(\mathrm{ng} / \mathrm{mL})$
\ldots	\ldots	2898	3277	4286	3641
		3060	3497	4552	3368
Intra-run Mean		3346	3627	4378	3635
Intra-run SD		3101	3467	4405	3548
Intra-run \%CV		227	177	135	156

- "Normal" precision and accuracy met
- Method validation for Transferrin bound iron was validated already
- "Subjective" method, but differences between technicians are acceptable
- Normal stability program completed successfully

TIBC MIN	TIBC MAX	MAX/MIN*100\%
2898	2898	100.0\%
3277	3235	98.7\%
4286	4286	100.0\%
3641	3641	100.0\%
3060	3201	104.6\%
3497	3938	112.6\%
4552	4586	100.8\%
3368	3481	103.3\%
3346	3281	98.1\%
3627	3047	84.0\%
4378	4833	110.4\%
3635	3765	103.6\%
4033	3933	97.5\%
5117	5425	106.0\%
3891	4340	111.5\%
4467	4174	93.4\%
3195	3302	103.3\%
3311	3344	101.0\%
4318	4305	99.7\%
4144	4427	106.8\%
3789	4274	112.8\%
4442	4257	95.8\%
4457	4387	98.4\%
4546	4243	93.3\%
3570	3570	100.0\%
4358	4492	103.1\%
4017	4205	104.7\%
4051	3860	95.3\%
4290	3966	92.5\%
3214	3361	104.6\%
2955	2874	97.2\%
3329	3153	94.7\%
4166	4089	98.1\%
3195	3344	104.7\%
4202	4173	99.3\%
3133	3345	106.8\%

Ceruloplasmin bound copper

WILSON'S DISEASE

Important to realize

- All known patients are under treatment
- Typical treatment is administration of a chelating agent
- Resulting in low, to very low, copper concentrations (both total and ceruloplasmin bound)
- Control of NCC is key in the treatment
- Total copper and available kits for ceruloplasmin content
- The golden standard

- Ultra centrifugation after EDTA addition and total copper`measurement
- EDTA addition and ion exchange chromatography

"Golden" standard: Substraction of Cu-Ceruloplasmin of total Copper

Cons

- Subtraction of two relatively large numbers with match uncertainties can lead to negative values for NCC
- Cumbersome: 2 analysis required
- Approximation on the number of Cu bound to each ceruloplasmin peptide
- Stability data between ceruloplasmin and other techniques does not match

Pro

- Esthablished method
- Characteristics are well known
- Technically least critical

To convert the ceruloplasmin activity in $\mathrm{mU} / \mathrm{mL}$ to a concentration in mg / L :
[Ceruloplasmin] in $\mathrm{mg} / \mathrm{L}=($ Response in $\mathrm{mU} / \mathrm{mL} / 3.33) * 10$
To convert the copper concentration from $\mathrm{ng} / \mathrm{mL}$ to $\mu \mathrm{g} / \mathrm{L}$:
[Copper] in $\mu \mathrm{g} / \mathrm{L}=$ concentration in $\mathrm{ng} / \mathrm{mL} \times 1000 \mathrm{ml} / \mathrm{L} / 1000 \mathrm{ng} / \mu \mathrm{g} / \mathrm{L}$
To calculate the NCC concentration in $\mu \mathrm{g} / \mathrm{L}$:
[NCC] in $\mu \mathrm{g} / \mathrm{L}=$ [Copper] in $\mu \mathrm{g} / \mathrm{L}-3$ in $\mu \mathrm{g} / \mathrm{mg} \times$ [Ceruloplasmin] in $\mathrm{mg} /$

- Samples are treated with EDTA ($3 \mathrm{~g} / \mathrm{L}$) and incubated for 60 minutes
- Centrifuged over a 10 kDa MWCO filter ($4000 \mathrm{~g}, 60$ minutes) with WIS in collection tube (Yttrium)
- Take an aliquot of the eluate and dilute in 1 ml nitric acid solution
- Analyse by continuous infusion in ICP-MS
- Calculate the actual NCC concentration
- Internal standard response compared to standards: to caculate the filtrate volume
- Response ratio internal standard and analyte: to calculate the concentration
- Both: to calculate the amount of "exchangeagble" copper in the filtration sample
- Correct for the diluton by EDTA to come to the actual $\mathrm{Cu}_{\mathrm{ex}}$ concentration

Results

- Total measurements, so proxy matrices can be used for copper response.
- Accuracy and precision very good (not in PBS, due to the instability in PBS)
- Fresh plasma/serum stored directly after collection at $-80^{\circ} \mathrm{C}$ yields lowest NCC results

Run Date	Run Name	$\begin{array}{r} \text { QC-blanc } \\ 64.1 \end{array}$	$\begin{array}{r} \text { QC-Low } \\ 130 \end{array}$	$\begin{array}{r} \hline \text { QC-Med } \\ 583 \end{array}$	$\begin{array}{r} \hline \text { QC-High } \\ 856 \end{array}$
		($\mathrm{ng} / \mathrm{mL}$)			
10 Apr 2017	CU-ICP3-002 (FT1)	69.3	123	$480{ }^{\text {a }}$	723
		65.6	120	524	774
		66.9	123	560	774
		64.1	121	512	788
		64.2	133	548	794
Intra-run Mean		66.0	124	525	771
Intra-run SD		2.2	5	31	28
Intra-run \%CV		3.3	4.2	6.0	3.6
Intra-run \%RE		3.0	-4.6	-10.0	-10.0
n		5	5	5	5
20 Apr 2017	CU-ICP3-006 (FT2)	$79.6{ }^{\text {a }}$	148	546	837
		$87.1{ }^{\text {a }}$	$150{ }^{\text {a }}$	550	789
		$88.7{ }^{\text {a }}$	141	537	848
		$86.1{ }^{\text {a }}$	$155{ }^{\text {a }}$	558	792
		$81.4{ }^{\text {a }}$	126	538	848
Intra-run Mean		84.6	144	546	823
Intra-run SD		3.9	11	9	30
Intra-run \%CV		4.6	7.8	1.6	3.6
Intra-run \%RE		32.0	10.8	-6.4	-3.9
n		5	5	5	5
20 Apr 2017	CU-ICP3-006 (FT3)	$88.1{ }^{\text {a }}$	139	518	872
		$82.4{ }^{\text {a }}$	$150{ }^{\text {a }}$	539	851
		$88.9{ }^{\text {a }}$	$159{ }^{\text {a }}$	576	880
		$89.8{ }^{\text {a }}$	137	562	853
		$95.5{ }^{\text {a }}$	$151{ }^{\text {a }}$	520	858
Intra-run Mean		88.9	147	543	863
Intra-run SD		4.7	9	26	13
Intra-run \%CV		5.3	6.2	4.7	1.5
Intra-run \%RE		38.8	13.2	-6.9	0.8
n		5	5	5	5

Direct NCC (both Cu-Ceruloplasmin and Cu-EDTA in 1 assay)

- Plasma samples are treated with EDTA (3 g/L) incubate for three hours
- Analyze over a TSK-GEL Q-STAT $7 \mu \mathrm{~m} 4.6 \mathrm{~mm} \times 10 \mathrm{~cm}$ Column (ammonium acetate gradient)

Direct NCC (both Cu-Ceruloplasmin and Cu-EDTA in 1 assay)

Challenges

- Low concentrations in study samples due to medication, far outside of the range of healthy volunteers
- Ethical obstacle to obtain matrix from patients (+ medication) or expensive
- Lyopholized Cu-Ceruloplasmin shows different stability profile than "native" Cu-Ceruloplasmin
- "Depletion" of the matrix using selective Ceruloplasmin antibodies leads to a non-representative matrix - Efficiency was limited

Solutions

- Use "low" and "High" native concentration plasma samples for the calibration curve and QC's
- Prepare Cu-EDTA concentration bij addition of Cu to (diluted) plasma samples
- Prepare Cu-Ceruloplasmin concentrations by dilution of a high concentration plasma pool
- Things to consider with this approach:
- Matrix effect
- Effect of dilution on equilibrium values
- No direct information on Cu-ceruloplasmin concentration
- Lyopholized Ceruloplasmin insufficiently homogeneous, stated concentration too wide to be of use
- 1) Determine total copper
- 2) Calibration curve in proxy matrix to determine Cu-EDTA concentration (in the chromatography assay)
-3) the substractions yields the starting Cu-Ceruloplasmin concentration

Performance

\square	Analysis date:	Concentration ($\mathrm{ng} / \mathrm{mL}$)			
Run \mathbb{D} :		LLOQ	LQC	MQC	HQC
		17.1	42.7	427	854
QCB2111-00447	23 Nov 2021	18.9	44.6	465	868
		18.1	44.2	478	880
		17.4	43.1	441	846
		17.8	42.6	448	893
		18.0	43.6	442	862
		18.9	44.1	443	811
Intra-run Mean		18.2	43.7	453	860
Intra-run SD		0.6	0.7	15	29
Intra-run \%RE		6.3	2.3	6.0	0.7
Intra-run \%CV		3.3	1.7	3.4	3.4
n		6	6	6	6
QCB2111-00566	30 Nov 2021	17.7	46.7	461	883
		18.9	44.6	440	817
		17.5	44.3	422	795
		17.3	44.6	419	845
		19.3	44.0	417	747
		19.2	44.1	423	765
Intra-run Mean		18.3	44.7	430	809
Intra-run SD		0.9	1.0	17	51
Intra-run \%RE		7.1	4.7	0.8	-5.3
Intra-run \%CV		5.0	2.2	4.0	6.3
n		6	6	6	6
QCB2201-00447	26 Jan 2022	20.5	46.6	469	835
		20.9	46.5	448	827
		20.9	48.8	465	845
		21.2	46.8	456	844
		20.5	47.0	443	809
		20.3	46.9	437	815
Intra-run Mean		20.7	47.1	453	829
Intra-run SD		0.3	0.9	13	15
Intra-run \%RE		21.2	10.3	6.1	-2.9
Intra-run \%CV		1.6	1.8	2.8	1.8
n		6	6	6	6
Inter-run Mean		19.1	45.2	445	833
Inter-run SD		1.4	1.7	18	39
Inter-run \%RE		11.5	5.8	4.3	-2.5
Inter-run \%CV		7.1	3.7	4.0	4.7
n		18	18	18	18

Run D :	Analysis date:	Concentration (n / $/ \mathrm{mL}$)	
		$\begin{gathered} \hline \text { LLOQ } \\ 21.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LQC } \\ 52.4 \\ \hline \end{gathered}$
QCB2111-00447	24 Nov 2021	$\begin{aligned} & 23.1 \\ & 20.3 \\ & 22.5 \\ & 22.1 \\ & 21.6 \\ & 23.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 51.1 \\ & 54.6 \\ & 53.0 \\ & 53.3 \\ & 55.3 \\ & 54.9 \\ & \hline \end{aligned}$
Intra-run Mean Intra-run SD Intra-run \%RE Intra-run \%CV n		$\begin{gathered} \hline 22.1 \\ 1.1 \\ 5.3 \\ 4.8 \\ 6 \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 53.7 \\ 1.6 \\ 2.5 \\ 2.9 \\ 6 \\ \hline \hline \end{gathered}$
QCB2201-00447	26 Jan 2022	$\begin{aligned} & \hline \hline 21.3 \\ & 23.0 \\ & 21.7 \\ & 21.7 \\ & 22.1 \\ & 23.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 50.8 \\ & 56.4 \\ & 53.9 \\ & 52.6 \\ & 55.5 \\ & 50.2 \\ & \hline \end{aligned}$
Intra-run Mean Intra-run SD Intra-run \%RE Intra-run \%CV n		$\begin{gathered} \hline 22.1 \\ 0.7 \\ 5.4 \\ 3.2 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 53.2 \\ 2.5 \\ 1.6 \\ 4.7 \\ 6 \\ \hline \end{gathered}$
QCB2204-00244	19 Apr 2022	$\begin{aligned} & \hline \hline 22.6 \\ & 21.6 \\ & 23.6 \\ & 23.9 \\ & 24.2 \\ & 24.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 49.8 \\ & 50.0 \\ & 51.6 \\ & 55.4 \\ & 56.7 \\ & 53.5 \\ & \hline \end{aligned}$
Intra-run Mean Intra-run SD Intra-run \%RE Intra-run \%CV n		$\begin{gathered} \hline 23.3 \\ 1.0 \\ 11.1 \\ 4.4 \\ 6 \end{gathered}$	$\begin{gathered} 52.8 \\ 2.9 \\ 0.8 \\ 5.4 \\ 6 \\ \hline \end{gathered}$
Inter-run Mean Inter-run SD Inter-run \%RE Inter-run \%CV n		$\begin{gathered} \hline 22.5 \\ 1.1 \\ 7.3 \\ 4.7 \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} 53.3 \\ 2.3 \\ 1.6 \\ 4.2 \\ 18 \end{gathered}$

Take home messages

- ICP-MS can be a valuable tool to measure metallo-proteins
- Proxy matrices can be usefull, depending on the relative stability of the protein of interest in
- Working at - or above - normal references ranges is easier than below
- Be prepared to work outside of the guidelines: what is the goal, rather than trying to follow them
- With creativity most problems can be solved

Thank You

[^0]: June 2022

